SAR Interferometry, Bayesian inversion, Sarpol-e zahab earthquake, Fault source parameters

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Earthquake fault of the 26 May 2006 Yogyakarta earthquake observed by SAR interferometry

We analyzed synthetic aperture radar interferometry (InSAR) to reveal surface deformation associated with the 26 May 2006 Yogyakarta earthquake, for which the fault location and geometry have not been clearly determined. Our results demonstrate that surface deformation occurred ∼10 km east of the Opak River fault thought to be the source of the May 2006 event and that the probable causative fau...

متن کامل

Bayesian inversion for finite fault earthquake source models – II : the 2011 great Tohoku - oki , Japan

S. E. Minson,1 M. Simons,1 J. L. Beck,2 F. Ortega,1 J. Jiang,1 S. E. Owen,3 A. W. Moore,3 A. Inbal1 and A. Sladen4 1Seismological Laboratory, Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA. E-mail: [email protected] 2Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA 3Jet Propu...

متن کامل

Bayesian inversion for finite fault earthquake source models I—theory and algorithm

S U M M A R Y The estimation of finite fault earthquake source models is an inherently underdetermined problem: there is no unique solution to the inverse problem of determining the rupture history at depth as a function of time and space when our data are limited to observations at the Earth’s surface. Bayesian methods allow us to determine the set of all plausible source model parameters that...

متن کامل

Neural Networks to Retrieve Seismic Source Parameters by Sar Interferometry

The use of supervised neural networks for the estimation of seismic source parameters from SAR interferometric data is presented in this paper. The RNGCHN software allowed the generation of the input-output pairs necessary for the learning phase of the net. After being trained, the net has been tested on real measured data. The obtained results encourage future developments of such an approach.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ?????? ?????? ??????? ?????

سال: 2022

ISSN: ['2008-9635', '2538-418X']

DOI: https://doi.org/10.52547/jgit.10.2.105